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Abstract

The plane problem for bonded elastic—viscoelastic half planes containing an arbitrarily oriented crack in the vicinity
of the interface is investigated. By using the Laplace transformation, the viscoelastic problem is first reduced to an
associated elastic one. The complex function method is used to solve the associated elastic problem. Then, the solution
of viscoelastic problem is obtained by using the inverse Laplace transformation of the associated elastic results. The
fracture parameters, such as the stress intensity factors and strain energy release rates, and the probable directions of
crack propagation are determined for various crack orientation and distance from the interface. The effect of elastic—
viscoelastic interface on a crack approaching it from either medium is discussed. © 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

The purpose of this work is to investigate the crack behavior in the vicinity of the interface of bonded
elastic—viscoelastic layers. In laminated composite materials, one method to improve the laminate’s toler-
ance to interfacial or through thickness cracks, is to place a thin adhesive layer between certain plies. The
adhesive layer is often required to be non-brittle with soft modulus and large failure strain, and is usually a
viscoelastic material. In order to estimate the effect of the viscoelastic adhesive layer or the interlay on the
fracture behavior, it is necessary to investigate the problem of a crack located near the interface of bonded
elastic—viscoelastic media.

The fracture strength of a composite material is controlled, to a considerable extent, by the size, shape,
orientation and distribution of flaws and imperfections which exist in the material due to the manufacturing
process. If the dominant imperfection is imbedded in a homogeneous phase and is located sufficiently far
from the interface, then the stress field around the imperfection will not be affected by the interface. On the
other hand, if the flaw is located near a bi-material interface, the effect of interface on the fracture behavior
of the nearby crack becomes important. For bonded elastic materials, in additional to the interfacial crack
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problems, the near interface crack problems have been a subject of active research. They include the special
cases of cracks which are parallel or perpendicular to the interface, and the general case of cracks which are
oriented arbitrarily with respect to the interface (Cook and Erdogan, 1972; Erdogan and Aksogan, 1974;
Lu and Lardner, 1992; Isida and Noguchi, 1993). For bonded elastic—viscoelastic materials, however, only
results of anti-plane problems of the interfacial crack and near interface crack are reported in the literature
(Sills and Benveniste, 1981, 1983; Atkinson and Chen, 1996; Chang, 1999). For viscoelastic problems, in
principle, it may be possible to use the so-called “correspondence principle”. The principle enables the
linear viscoelastic problems to be reduced to mathematically equivalent elastic ones (the associated elastic
problems). With regards to the correspondence principle and viscoelastic problems, the reader is encour-
aged to consult the literatures, such as works by Lee (1962) and Schapery (1967).

In this paper, the plane problem of an arbitrarily oriented crack located near the interface of bonded
elastic—viscoelastic materials is investigated. First, by using the Laplace transform method, the viscoelastic
problem is reduced to an associated elastic one. The convenient and powerful complex function method is
used to obtain the solution of the associated elastic plane problem. Then, the original viscoelastic solution is
obtained by the inverse Laplace transform method. The interface and viscoelastic effects on the fracture
parameters (such as stress intensity factors and strain energy release rates) of a near interface crack which
approaches the interface from either phase, are investigated through numerical calculations.

2. Constitutive equations of viscoelastic materials

For isotropic linear elastic materials, the stress—strain relation can be expressed in deviatoric form as
sij = 2pe;, o = 3Key, (1)

where s;; and e;; are deviatoric stress and strain tensors, x4 and K are shear and bulk moduli, respectively.
For isotropic linear viscoelastic materials, the time dependent stress—strain constitutive equations can be
expressed in a differential form as

Pi(D)s;; = Q1(D)ey, Py(D)ow = O2(D)ex, (2)

where Py, O, P, and Q, represent polynomials of the time derivative operator D = 9/0r.
Taking the Laplace transform of Eq. (2), and assuming that prior to time ¢ = 0, all stresses and strains
are zero, we obtain

Pi(p)siy(p) = Qi(p)ey(p),  Pap)ou(p) = Qa(p)éu(p), (3)
where the notation f(p) denotes the Laplace transform of f(¢), i.e.,

Fo) = LIf (1) = / " f(@)exp (—pr)dr.

And L~! expresses Laplace inverse transform, i.e., L~'[f(p)] =f(1).
By defining the equivalent shear and bulk moduli i and K, as

2= 0:(p)/Pi(p), 3K =0up)/Pa(p), (4)
Eq. (3) reduce to the following forms:
$y(p) = 208,(p),  u(p) = 3Ké(p). (5)

Comparing Eq. (5) with Eq. (1), it can be seen that the constitutive equations of viscoelastic materials, in
the Laplace transformed field, are similar to those of elastic materials. Consequently, a viscoelastic medium



X. Han et al. | International Journal of Solids and Structures 38 (2001) 3453-3468 3455

can be treated as an elastic one in the transformed field. The viscoelastic solutions can then be obtained
from the associated elastic solutions by using the inverse Laplace transform. In Section 3, we will solve the
corresponding elastic problem first, the results of which will hold for viscoelastic materials in Laplace field,
with elastic variables and elastic moduli replaced by the corresponding Laplace transformed variables and
equivalent moduli.

3. Near-interfacial crack fields

The near-interface crack problem considered is shown in Fig. 1 in which the half planes S; and S,
represent two different materials. The crack is located in one-half plane, without loss of generality, such as
in S, and the crack geometric parameters are shown in the figure. Quantities in S; and S, are noted by
subscript 1 and 2, respectively. Assuming that the solid is subjected to uniform stresses at infinity, they are
denoted as o7y (in S1), 675 (in S>), 6)° and o7;. The applied stresses in the x direction are related such that to
produce constant strains in the x direction at points remote from the crack. The following relation must
then hold (Goree and Venezia, 1977; Isida and Noguchi, 1993):

1 Hy Hy ]}
oX = —(14+r)o5+ [3—xk ——3—1)c| 7, 6
o 1+K1{u2( 2)05 1 .Uz( 2)0; (6)

where x; = 3 — 4v; for plane strain and x; = (3 — v;)/(1 + v;) for plane stress, y; and v; (i = 1, 2) are shear
modulus and Poisson’s ratio.

Using the superposition technique, the traction-free crack problem in the composite medium under
external loads can be expressed as the sum of two parts. The first part is the field for the bonded half planes
without any crack and loaded with the external loads. The second part is the disturbed field for the bonded
planes having no external loads at infinity but only applied tractions on the crack surfaces which are equal
and opposite to the stresses found in the first part solution of the presumed location of the crack. The field
of the first part (crack-free) is known. Only the distributed field of the second part needs to be determined,
and it is given below.

< O-xl(t)
Sy
#X
Sy
&
—>
o5(t)

Fig. 1. A crack near the interface of two bonded half planes.
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3.1. Formulation of the crack field

For an isotropic elastic body under plane deformation, the stress components can be represented by two
complex potentials @(z) and Q(z) (Muskhlishvili, 1953; Suo, 1989), as

Tu + 0y = 2[8(2) + B(2)], (7)
0y — 0y = D(2) + Q) + (z - 2)®(2).

For a single edge dislocation located at z = s in S, the complex potentials are given by Suo (1989) as,

A+ A)Dy(z), z in Sy, A +1)Q(z), z in Sy,
qj(z){%(z)ﬂggo(z), -in S, Q(Z){QO(ZHA%O(Z), - in S, (8)
where ®y(z) = B/(z—s), Q(z) =B/(z—s) +B(E —s)/(z — s)z, B = (b, +1ib,)p, /in(12 + 1), and
A:“‘f‘ﬁ :Oﬁ—ﬁ “:MI(KZ"'I)_ﬂZ(Kl"i'l) :ﬂl(KZ_l)_.“z(Kl_l)
1-p L+ p (162 + 1) + (w1 + 1) (K2 + 1) + (e + 1)

Substituting Eq. (8) into Eq. (7), the field induced by the dislocation can be calculated. In particular, the
stress components (in the local coordinate system), along the crack line can be obtained as

_ I _
Oyy + 10y = 2B(s)e™ —— + B(s)Gi(z,5) + B(s)Ga(z, ), 9)

zZ—3S

where 6 is the angle of the crack line with the interface (Fig. 1), and

—+ 5 —
z—=8 (z—s z—3S
(z—s) ( (10)
G, =TI _1 + s—§2+ezm(s—§)(z+§3—22) 1 Al 1_.
Z—-s (z-3) (z—=73) z—5
Changing the right-hand side of Eq. (9) into the local coordinate system x'O’y/, it becomes
. — o 1 —
Oyy + 00y = 2B(E) e’ —— 7 +B(E)G (X, &)+ B(E)Gy (X, &), (11)

where ¥’ and ¢ are the local coordinates of the points z and s along the crack line, i.e., z =z + x’e!,
s =zo + &€, with zy being the coordinate of the point O/, and denote Gi(z,s) = Gi(zo + '€,z + Ee¥)
simply by G;(x', &) (i =1, 2).

The crack can be modeled by continuously distributed edge dislocations along the crack of length 24,
with the density function B(&) (|¢] < a) to be determined from the boundary condition of the crack. The
stress components along the crack line, due to the continuous distributed dislocations, can be derived
through the integration of the effect of a single dislocation field (11) as,

Gy + Gy :2/_”§(é)eie /1 d§+/_a[B(€)G1(x'75)+§(5)G2(x/7é)]df, (12)

a X _é a
The stress components along the assumed crack line due to external loads are
: , i0 o | i 00} 20
oy +ioy, =3(0% +070)(1 — ) + (o) + oy )e™. (13)

Thus, the total stress components along the crack surface, would satisfy the traction-free condition, or the
disturbed field should have applied tractions on the crack surfaces which are equal and opposite to
oYy +idl,, ie.,
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2[1‘3(5)6" ! [H[B(C)Gl(x’,f)+1_3(§)Gz(x’,é)]dé: —(oyy +iay,), W[ <a (14)

a x/_é a

This singular integral equation is the governing equation of the crack problem. In addition, the required
single value condition of displacement gives the following equation:

/aB(é)dé =0. (15)

a

From the solution of the above governing equation, the dislocation density function B(&), and the disturbed
crack field are obtained.

3.2. Numerical solution procedure and fracture parameters

The integral equation (14) can be solved numerically by using the Chebyshev polynomial technique
(Erdogan et al., 1973), provided the dislocation density function B(¢) is expressed by the Chebyshev
polynomials as

B(¢& Wip) Zaka (16)

where 1 = £/a, |&]| < a, |7] < 1, Ti(1) is the Chebyshev polynomial of the first kind, a; (k=0,...,N) are
coefficients to be determined. The Eq. (15) then gives ap = 0, and the integral equation (14) takes the form,

N N N
=21y GU (¥ fa) + Y a1 (X k) + Y aga (k) = —(o), +id),), Y| <a, (17)
k=1 k=1 =

where Uy ( ) is the Chebyshev polynomial of the second kind, and

1
T;
g k)= a/ Gi(x',ar) lk(r) zdr, i=1,2. (18)
-1 -1
Eq. (17) with N unknowns a; (k =1,...,N) can be solved by the simple collocation method, which satisfies
the equation at N discrete points x; in the interval |x'| < a, such as
/ in .
= —_— =1,...,N. 1
x; acos(NJrl), i ,...,N (19)

Furthermore, in the integral calculation of Eq. (18), the Chebyshev numerical integration rule may be used,
such that

N .

T (2j—Dn

dtr Y AF(t)), A4, =—, Tj = €08 ————. (20)
; J J J N J 2N

/ F(t
V1 =12

In this manner, the integral in Eq. (18) is reduced into a summation, and Eq. (17) into a system of linear
algebraic equations that can be solved easily.

Upon solution of the governing equation, the dislocation density function is known, and the stress and
strain at any point of the plane can be obtained. From Eq. (12), the singular stress term at the crack tips
along the crack line is
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. a0 L
Oyy + 10,y = 2/ B(f)eﬁmdf

. k
=2e‘”ﬂZak(n—¢n2—1) /\/nz—l, n=x/a, |n| > 1. (21)
k

The stress intensity factor can then be obtained as

K= KI + iKH = 111’1(')1\/ 21'{7"(0'},/},/ + iO’xry/> =\ Ta 5 (22)

+ Zeng( + 1)"g
k

where r is the distance ahead of the crack tips along the crack line, and the quantities with upper and lower

signs refer to the right- and left-hand tips of the crack, respectively. The energy release rate of the crack, in

terms of K is given by

Ky + 1
8u,

When mode II stress intensity factor Ky # 0, the crack may not propagate along the original crack plane.
The probable angle of crack propagation satisfies the relation (Erdogan and Aksogan, 1974),

G= K. (23)

Kising, + Ky (3cosp, — 1) = 0, (24)

where ¢, is measured from the crack prolongation line. The energy release rate of the crack propagation
along the angle ¢, can be determined approximately by

_K2+1

G
ity

I (25)

Pe

where K’ = (1/2)cos(¢./2)[Ki(1 + cose,) — 3Ky sing,].

4. Viscoelastic fields

Upon determining the elastic solution /' = f(C, o), where C represents elastic shear and bulk moduli and
o is the external load, the corresponding viscoelastic solution can be obtained by the following procedure.
First, replace elastic variables (f and o) by Laplace transformed variables (f and 6), and elastic moduli (C)
by the corresponding equivalent moduli (é‘). Then, using the inverse Laplace transform of the associated
elastic solution, the viscoelastic solution is obtained, i.e., f(r) = L~'[f(p)]. We will show the procedure in
some details.

In the elastic solution, the coefficients a; of the Chebyshev polynomials representation are related to

material moduli and external loads in addition to geometrical parameters, and can be written as
ay :ak(,ulaKlnu%KL0-;370-5070-;;)' (26)
In the transformed Laplace field, the associated elastic one can be written as

dk :dk(/:zlakluakkh6-5376-;076-;;)' (27)

Note that the equivalent moduli and the transformed external loads in the above formula are all functions
of p, thus a; = a;(p). Taking the inverse Laplace transform of @, the viscoelastic solution is obtained, i.e.,

ar(t) = L™ ax(p)]-
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From Eq. (16), the dislocation density function is

B(&,t)

Zak )Ti(z (28)

1—12

Similarly, from Eq. (22), the stress intensity factor is given by

K(t) = v/na

+2e'ny (£ D'a(r)|. (29)

For an elastic media, there is a direct relation between the energy release rate and stress intensity factor
(Eq. (23)). However, no such relationship exists for a viscoelastic material. The energy release rate for the
latter is determined from the integral definition,

= % /0 t(6 — r)AU(r)dr,

where t(r) = g, (r) + 10y, (r) are the crack-tip tractions, AU(r) = Au, (r) + iAu.(r) are the differences of
crack-face displacements, and ¢ is an arbitrary length scale. Through some calculations, finally, the energy
release rate of the crack in viscoelastic materials can be determined by

K2 +1 .
e <p>]. (30)

The probable angle of crack propagation may be obtained from
Ki(¢)sing,(t) + Kn(#)[3cos o (t) — 1] = 0. (31)

The energy release rate of the crack along the angle ¢, is then determined by

+ 1
%~ Ku(p)

Gy () = [Ki(0) fi(oc) +Ku(f)fz(<0c)]{L_1

fz(%)} (32)

where fi(¢) = (1/2)cos(@/2)(1 + cose), f(¢) = —(3/2)cos(p/2)sin¢.

At two special instances, i.e., the initial state t = 0 and the terminal one ¢ — oo, the crack fields can be
determined simply without Laplace inverse transform, according to the theorem f(0%) = lim, .o+ f(#) =
hmpﬂxpf(p) f(o00) = lim,_..f () = llmpﬂopf(p) Thus, for the material moduli C (i1, 7,E, K, ...), we have
C(0) = lim,_+ C(¢) = lim,_.,C(p), C(c0) = lim,_.,C(¢) = lim, .,C(p). In fact, the Vlscoelastlc ﬁelds at the
two special states, correspond to two elastic ones in which material moduli C(0) and C(occ) are used.

5. Numerical technique and results

In the elastic solution, quantities are complex functions. For the convenience of the inverse Laplace
transform, complex functions are expressed as real and imaginary parts first, i.e., g = f1 + if2. The asso-
ciated functlons are g(p) = (p) +1 f2 (p) (where p is a complex quantity also). For the viscoelastic solution,

g(t) = L', (p)] +iL™" [fz(p)] In the following, the inverse Laplace transform is taken to the function f, (p)
and fz(p) not to g(p) directly.

To perform the inverse Laplace transform, usually it is not convenient to apply the complex inverse
integral directly,
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1 yHico
10 =100 =55 [ Fweap (33)
Instead, using p =y + iy, and writing f(x +iy) = u(x,y) + iv(x, y), then the complex inverse integration
becomes the following infinite integration:

L) =S [ ) eosyt — ol )sindy (34)

There are certain techniques for the evaluation of infinite integral. To keep high convergent speed and
accuracy to a slow decay integrand, it is preferable to evaluate the integral in closed form for large ar-
gument value. In the problem under consideration, when the external load is a step function ¢ (¢) =

H(t) (where H(t) denotes the Heaviside unit step function), in the Laplace field, usually ¢>°(p) =< 1/p,
and the associated solution has the form of f(p) = F(p)/p with an asymptotic value F(oco)/(iy) as
p — 7+ 1oco. After analyzing the asymptotic behavior, the inverse transform can be calculated by

e

F~ { [ utrncost) = o siniay + Fioe) [ ““T(”)dy}, (35)

T

where A is a large number. The first integral in Eq. (35) is a finite one, which can be evaluated numerically.
The second integral can be obtained in a closed form as

/OC —Si“y(y’) dy = —si(14), 36)

where si(x) = — f (sin¢/¢)dt is the known sine integral. The proper selection of the large number A4 re-
quires tr1a1 calculation. A similar technique for the inverse Laplace transform has been used by Delale and
Erdogan (1981). When A4 is quite large, the numerical result becomes insensitive to it. In fact, we can select a
large enough A which satisfies the condition si(z4) = 0, then the second integral in Eq. (35) is zero, and only
the regular finite integral needs to be calculated. In this problem, we select t4 = 629.8909 (when ¢ is not
large, such as ¢ < 10, however, for larger values of 7, a larger 74 can be selected, if necessary), which satisfies
si(t4) = 0, and yields accurate enough results. The numerical results are also insensitive to the choice of
constant 7. In the problem under consideration, for f (p), no singularities lie in the right-hand plane
Re(p) > 0. So y can be any positive constant.

In the numerical calculation, a combination of a viscoelastic and elastic materials is used as an example.
It is assumed that material 1 is a viscoelastic one, e.g., epoxy polymer with the following properties at the
initial time ¢ = 0:

Eo =34 GPa, Vo = 0.3.

At the initial time, other material parameters such as the shear and bulk moduli, can be calculated in terms
of Ey and v, e.g., 1y = Eo/[2(1 + vo)] and Ky = Eo/[3(1 — 2vp)]. The viscoelastic behavior of the material is
represented by a combination of elastic (springs) and viscos (dashdots) elements. Here, the epoxy shear
modulus is modeled by the standard linear solid (Fig. 2). It is assumed p., = /10 and the relaxation time
of the shear modulus is 7. The parameters G, G, and n, of the standard linear solid viscoelastic model can
be determined from g, ., and 7. For the epoxy polymer, it is also assumed that the bulk modulus K is a
constant, i.e., K = K,. Thus, the viscoelastic material model is now completely specified. The parameters
and relations of the viscoelastic model are given in the appendix. Fig. 3 shows the material properties,
including relaxation moduli (both shear modulus u(¢) and extension modulus E(¢)) and shear creep com-
pliance J(¢) of the epoxy polymer described above. The normalized time 7, is the retardation time of J(¢),
which is related to the relaxation time 7g by © = 16,/ 1., (see Appendix A).



X. Han et al. | International Journal of Solids and Structures 38 (2001) 3453-3468 3461

Gy

Gz ??2

Fig. 2. Standard linear viscoelastic solid model.
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Fig. 3. Viscoelastic material properties, including relaxation moduli and creep compliance.

It is assumed that material 2 is elastic, e.g., glass, with the following elastic constants:
E=85GPa, v=0.2.

All of the other moduli of the glass are constant and can be determined accordingly.

The numerical calculation is for the plane strain condition. These results are for the remote uniform
loading condition,

o (t) = o H(t), o (t) = o H(1), £2°(t) = & H (1),

where H(¢) denotes the Heaviside unit step function. For convenience, 6% (7) = ¢%H (¢) is often used as the
external loading in x direction instead of &2°(¢). The remote stress ¢3}(¢) has a relation with ¢35(¢) and ¢°°(¢),
which satisfies Eq. (6) in the Laplace field. It is also noted that although o75(¢) and ¢}°(¢) are constants,
0% (t) changes with time, because the moduli of the viscoelastic material change with time. This relation is
shown in Fig. 4. From the figures, we can see that ¢2(¢) has a similar trend as the shear modulus pu(z) of the
viscoelastic material. It also has a similar intrinsic characteristic time as that of u(¢) (the relaxation time g
which equals 0.1t for the assumed material, can be considered as the intrinsic characteristic time of p(¢)).
But the trend of ¢3y(¢) is quite different from that of the creep compliance (Fig. 4(a)). The stress ¢3(¢) is
greatly influenced by the stress component G;O(t) in y direction (Fig. 4(b)). The results to follow are for the
remote loading which is parallel to the interface, with ¢%(¢) equals the unit step function H (¢) (and o3 (¢) is
related to ¢%5(7)). The stress intensity factors (SIF) are normalized (divided) by /ma; the strain energy
release rates are normalized by Gy = (x, + 1/8u,)ma, which is the corresponding value for a crack in
material 2, far away from the interface and normal to the loading direction.
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= o6 }o: 1s 02f
1 ]l 2 Z oof
- L LR ¥ —3 m:
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Fig. 4. (a) The variation of stress component 37 (¢) with time under applied loading o35 = H (¢) and ¢;° = 0. (b) The variation of stress
component o7} (¢) with time under applied loading ¢35 = H(¢) and different a)° values.

To check the accuracy of the present method, the results for a crack near the interface of bonded elastic
half planes, are compared with those of Erdogan and Aksogan (1974) and Isida and Noguchi (1993), at the
limit cases ¢t = 0 or ¢t — oo. The agreement is indeed very good. The values of stress intensity factors agree
up to third or fourth digit. The present method yields results with high accuracy and fast convergence rate,
provided the crack tip is not too close to the interface. As the crack tip approaches the interface, more
polynomial terms for the dislocation density (and corresponding collocation points) are required. For
example, to keep the stress intensity factors within 4 digits accuracy, about 20-30 terms are needed, if the
distance of crack tip to interface #/a = 0.1. For a crack not normal to the interface, especially when about
parallel to the interface, usually more terms are needed when £ /a is quite small. For example, for a normal
crack with z/a = 0.01, about 60 terms are sufficient, while for a parallel crack with #/a = 0.02, more than
hundred terms are necessary.

Figs. 5-8 show the effects of interface and viscoelasticity on fracture parameters of a crack near the
interface, under remote loading parallel to the interface. The effect of interface when the crack is under
pressure on its surfaces, is depicted in Figs. 9 and 10.

6. Discussion of results

Under remote uniform loading parallel to the interface, the variation of the stress intensity factors K
(mode I) and strain energy release rates G at crack tips, are shown in Fig. 5 as the crack approaches the
interface at a right angle from material 2 (the stiffer material, e.g. glass). In contrast, Fig. 6 depicts the same
fracture parameters as the crack approaches the interface from material 1 (the softer viscoelastic material,
e.g. epoxy). It is seen from Fig. 5 that K and G increase rapidly as the crack approaches the interface from
the stiffer material 2, and the values at near tip A increase at a faster rate than those at the far tip B.
Conversely, K and G decrease as the crack approaches the interface from softer material 1, and the values at
the near tip A decrease at a faster rate than those at the far tip B (Fig. 6(a)). A comparison of Figs. 5 and
6(a) indicates that a crack can easily grow towards an interface from a medium of higher modulus (elastic
material) than that of a lower modulus (viscoelastic material). This is a well-known behavior for a crack
approaching an interface. It is also seen that when the crack is some distance away from the interface, such
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Fig. 5. The trend of stress intensity factors and energy release rates as a crack approaches the interface perpendicularly from the stiffer
material 2 (glass), when subjected to uniform loading parallel to the interface.

(a) (b)

0.04

0.03

O o002
N4
0.01
000 L 1 1 1 1 1 1 1 1 ] 000 1 1 1 1 1
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Fig. 6. (a) The trend of stress intensity factors and energy release rates as a crack approaches the interface perpendicularly from the
softer material 1 (epoxy), when subjected to uniform loading parallel to the interface. (b) The variation of stress intensity factors and
energy release rates with time for a crack in the viscoelastic medium at a distant # = 0.1la from the interface.

as h > a, K and G do not vary much, and the influence of interface is quite small. From Fig. 5, it is also seen
that K and G only change (here increase) a small amount with time. This indicates that the crack field in the
elastic medium is nearly unaffected by the viscoelastic behavior of the softer adjacent medium. On the other
hand, from Fig. 6 it is seen that K and G of the crack in the viscoelastic medium change (here decrease)
considerably with time. The variation with time is shown more clearly in Fig. 6(b) for a crack at a distance
h = 0.1a, and they indicate a similar trend as the stress component ¢ (¢) in the viscoelastic medium (Fig. 4).
When comparing the fracture parameters in Fig 6(a) (crack in the softer material) with those in Fig. 5
(crack in the stiffer material), it can be seen that the corresponding values are much smaller.

For a crack in the elastic medium (material 2) approaching the interface at an angle 6 = 45°, the stress
intensity factor and the energy release rate are shown in Fig. 7(a) for the near tip A. The same is shown in
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Fig. 7. (a) Stress intensity factors and energy release rate at crack tip A, as the crack approaches the interface with an angle 6 = 45°
from material 2 (elastic). (b) Cleavage angle and energy release rate along it at crack tip A, as it approaches the interface with an angle
0 = 45° from material 2. (c) Stress intensity factor Kj; and energy release rate at crack tip A, as it approaches the interface with different
angles from material 2.

Fig. 8(a) for a crack approaching the interface from material 1 (viscoelastic one). It can be seen that the
stress intensity factors and energy release rates have similar trends with respect to distance and time as those
of normal cracks (compare Figs. 5 and 6(a) with Figs. 7(a) and 8(a)). In contrast to cracks normal to the
interface and loading direction, for inclined cracks, in addition to mode I, there is also a mode II stress
intensity factor. This implies that an inclined crack (0 # 90°) would propagate in a curve path. Figs. 7(b)
and 8(b) show the probable cleavage angle ¢ and the energy release rate G, along the angle ¢, at the near
interface crack tip A, as the crack with the initial angle 6 = 45° approaches the interface, from materials 2
and 1, respectively. It is seen that all angles ¢, are positive and the direction of crack propagation ap-
proximately tends toward normal to the external loading direction, irrespective from which material it
approaches the interface. Note, however, that the value of ¢, is different depending on which medium the
crack is located. For cracks with other angles (8 = 60° and 30°), Kj; and G at the near crack tip are shown in
Figs. 7(c) and 8(c) for cracks in material 2 and 1, respectively. It can be seen that mode II stress intensity
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Fig. 8. (a) Stress intensity factors and energy release rate at crack tip A, as the crack approaches the interface with an angle 6 = 45°
from material 1 (viscoelastic). (b) Cleavage angle and energy release rate along it at crack tip A, as it approaches the interface with an
angle 0 = 45° from material 1. (c) Stress intensity factor Kj; and energy release rate at crack tip A, as it approaches the interface with
different angles from material 1.

factors are always negative, which implies that the crack propagation angles are always positive and tend to
propagate perpendicular to the external loading direction. The trend for the crack cleavage direction
predicted herein was also indicated by Erdogan and Aksogan (1974) for cracks in bonded elastic materials
under far external loadings.

For a crack subjected to a uniform normal pressure H(¢) on its surfaces, the values of G and Kj; at the
near crack tip A, as the crack approaches the interface from material 2 and material 1 are shown in Figs. 9
and 10, respectively. Similar to the case of remote loading condition, G increases as the crack approaches
the interface from the stiffer material 2, and decreases, for the softer material 1. The crack field changes
slightly with time when the crack is located in the elastic material 2, but time has significant effect (the crack
field increases significantly with time) on the crack field which is located in the viscoelastic material 1. In
contrast to the case of remote loading parallel to the interface, under the normal loading on the crack
surfaces (including remote loading normal to the interface), the energy release rate G, for a crack located in
the softer material is higher than that of a crack located in the stiffer material. When the crack approaches
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Fig. 9. Stress intensity factor Kj; and energy release rate at crack tip A, as the crack approaches the interface with different angles from
material 2 (elastic), when subjected to uniform pressure H(¢) normal to the crack surfaces.

0.6

Fig. 10. Stress intensity factor Kj; and energy release rate at crack tip A, as the crack approaches the interface with different angles from
material 1 (viscoelastic), when subjected to uniform pressure H(¢) normal to the crack surfaces.

the interface from the medium with a higher modulus, Kj; become negative (Fig. 9), which indicates that the
crack tends to propagate towards the interface. Correspondingly, when the crack approaches the interface
from the medium with a lower modulus, the positive Kj; (as shown in Fig. 10) indicates that the crack tends
to propagate away from the interface. With regard to the propagation trend of near-interface cracks which
are loaded normal to the crack surfaces, similar results have been reported by He and Hutchinson (1989),
and Lu and Lardner (1992) for elastic materials.

7. Conclusions

In this paper, the plane problem of bonded elastic—viscoelastic half planes containing an arbitrarily
oriented crack near the interface is considered. The viscoelastic problem is reduced to an associated elastic
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one by using the Laplace transform. After solving the associated elastic problem by the method of complex
potential functions, the original viscoelastic solution is obtained by taking the inverse Laplace transform to
the associated elastic result. As an illustrative example, a crack near the interface of bonded materials, glass
(elastic one) and epoxy (viscoelastic one) is considered. The fracture parameters of the crack located in
either the stiffer elastic material or the softer viscoelastic material, are analyzed. The interface and time
effects on the crack fields are investigated. The results indicate the following trends.

Under constant external loadings, the crack fields do not change significantly with time when the crack is
located in the elastic material. On the other hand, when the crack is located in the viscoelastic material, the
stress fields, stress intensity factor and energy release rate of the crack vary significantly with time. The
variation with time follows a similar trend as the moduli of the viscoelastic material.

When the crack approaches the interface from the stiffer material, the fracture parameters increase, and
this indicates that the crack is likely to propagate towards the adjacent softer material. Conversely, as the
crack approaches the stiffer material, the fracture parameters decrease, which imply that the adjacent stiffer
material will prevent the crack from propagating towards the interface. When a finite crack is a certain
distance away from the interface, about a distance of one half of crack length (from the near-crack tip to the
interface), the influence of the interface is quite small.

Under a remote loading parallel to the interface, the energy release rate of a crack located in the softer
material is smaller than that of a crack in the stiffer material. Through the analysis of crack propagation
angles, it is shown that cracks tend to propagate perpendicular to the external loading direction under the
parallel loading to the interface.

When a crack is loaded normal to its surfaces, the energy release rate of a crack located in the softer
material is larger than that of a crack in the stiffer material (under the same surface loading). This is dif-
ferent from the case of a crack under the external loading parallel to the interface. Under this surface
loading, when the crack approaches the interface with a softer adjacent material, the crack will tend to
propagate toward the interface. In contrast, the crack will tend to propagate away from the interface when
it approaches the interface with a stiffer adjacent medium. For a crack near and about parallel to the in-
terface, when the applied far field load is normal to the interface, the same type of crack propagation trends
are observed.
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Appendix A

A viscoelastic material described by the standard linear solid shown in Fig. 2, has the stress—strain re-
lation,
(alD + I)Sij = (le + b())el'j, (Al)
with a; = 1,/(G1 + Gz), by = 2G1G, /(G + G2), b1/by = 11,/ G>, and D is the time derivative operator, 0/0t.
The equivalent shear modulus is then given by
20 = bip+bo (A.2)
ap+1

where p signifies the transformed variable in the Laplace operation.
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The shear relaxation modulus (shear stress under unit step shear strain) is

G

2u(t) = zcl{l Bl - exp(- t/rc,)]} (A3)

with y, = Gy, u,, = G1G»/(Gy + Gy), and shear (modulus) relaxation time tg = 1,/(G1 + G»).
The shear creep compliance (shear strain under a unit step shear stress) is

L1

P2Q 26

J(t)=L" + 2%2 [1— exp(—t/7)] (A4)

with shear (compliance) retardation time © = 1,/G,, and © = (/) TG-
The extension relaxation modulus can be obtained from the relation,

ook

3K+ 1

For the case of K = constant,
E(t) =Ey— (Eo — E,)[1 — exp(—t/7r)], (A.6)

with Ey = 9K 1ty/ (3K + ttg), Exe = 9Kt/ (3K + 1) and g = (E/Eo)7.

References

Atkinson, C., Chen, C.Y., 1996. The influence of layer thickness on the stress intensity factor of a crack lying in an elastic (viscoelastic)
layer embedded in a different elastic (viscoelastic) medium (mode III analysis). International Journal of Engineering Science 34,
639-658.

Chang, R.C., 1999. Finite thickness cracked layer bonded to viscoelastic substrate subjected to antiplane shear. International Journal
of Solids and Structures 36, 1781-1797.

Cook, T.S., Erdogan, F., 1972. Stresses in bonded materials with a crack perpendicular to the interface. International Journal of
Engineering Science 10, 677-697.

Delale, F., Erdogan, F., 1981. Viscoelastic analysis of adhesively bonded joints. ASME Journal of Applied Mechanics 48, 331-338.

Erdogan, F., Aksogan, O., 1974. Bonded half planes containing an arbitrarily oriented crack. International Journal of Solids and
Structures 10, 569-585.

Erdogan, F., Gupta, G.D., Cook, T.S., 1973. Numerical solution of singular integral equations. In: Sih, G.C. (Ed.), Mechanics of
Fracture, vol. 1. Noordhoff, Groningen, pp. 368-425.

Goree, J.G., Venezia, W.A., 1977. Bonded elastic half-planes with an interface crack and a perpendicular intersecting crack that
extends into the adjacent material. International Journal of Engineering Science 15, 1-17.

He, M.Y., Hutchinson, J.W., 1989. Crack deflection at an interface between dissimilar elastic materials. International Journal of Solids
and Structures 25, 1053-1067.

Isida, M., Noguchi, H., 1993. Arbitrarily array of cracks in bonded half planes subjected to various loadings. Engineering Fracture
Mechanics 46, 365-380.

Lee, E.H., 1962, Viscoelasticity. In: Flugge, W. (Ed.), Handbook of Engineering Mechanics. McGraw-Hill, New York, pp. 53-1
(Chapter 13).

Lu, H., Lardner, T.J., 1992. Mechanics of subinterface cracks in layered material. International Journal of Solids and Structures 29,
669-688.

Muskhelishvili, N.I., 1953. Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff, Groningen, The Netherlands.

Schapery, R.A., 1967. Stress analysis of viscoelastic composite materials. Journal of Composite Materials 1, 228-267.

Sills, L.B., Benveniste, Y., 1981. Steady state propagation of a mode III interface crack between dissimilar viscoelastic media.
International Journal of Engineering Science 19, 1255-1268.

Sills, L.B., Benveniste, Y., 1983. Steady interface crack propagation between two viscoelastic standard solids. International Journal of
Fracture 21, 243-260.

Suo, Z., 1989. Singularities interacting with interfaces and cracks. International Journal of Solids and Structures 25, 1133-1142.



